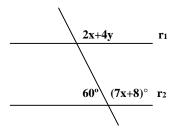


PORTAFOLIO DE SEGUNDA OPORTUNIDAD DE MATEMÁTICAS 2 Semestre Enero-Junio 2018

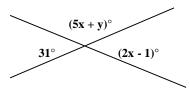
NOMBRE:	GRUPO	D: CALIF
MATRICULA:		
PRIMERA ETAPA. ECUACIONES CUADRÁ? VARIABLE.	TICAS O DE SEGUNDO	GRADO CON UNA
Resuelve cada ecuación cuadrática por el método indic 1 x^2 - $6x$ - 11 = 0 (Factorización)	ado:	
2 -2 - 2 - 40 0		
2 $y^2 + 2y - 48 = 0$ Factorización	Fórmula general: $\pmb{\chi}=$	$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
$3 6x^2 - 23x + 20 = 0$		
Fórmula general:	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

4 $9x^2 - 1 = 0$ (Por factorización o fórmula general)	5 $6x^2 + 15x = 0$ (Por factorización o fórmula general)

SEGUNDA ETAPA. GEOMETRÍA PLANA.


ÁNGULOS

$\pi rad = 180^{\circ}$									
Expresa lianes.	el	ángulo	100°	en				en	8 Expresa el ángulo $\frac{5\pi}{18}$ radianes en grados.



9.- Halla el valor de \underline{v} en la figura $(r_1||r_2)$.

10.- Halla el valor de <u>v.</u>

TRIÁNGULOS.

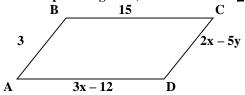
11.- Si A. B y C los ángulos interiores de un triángulo, donde <A = $(2x + 14)^{o}$, <B = $(5x - 6)^{o}$ y<C = $(3x + 8)^{o}$. Halla la medida del ángulo B.

0

POLÍGONOS.

$s_{a_i}=180^\circ(n-2)$	$a_i = \frac{180^{\circ}(n-2)}{n}$	$d=\frac{n(n-3)}{2}$	$a_e = 360^\circ$	$a_e = \frac{360^{\circ}}{n}$

12.- Los ángulos que se dan son ángulos de un hexágono, halla el ángulo E.


$$<$$
A= $(4x + 15)^{\circ}$, $<$ B= $(3x - 2)^{\circ}$, $<$ C= $(x - 11)^{\circ}$, $<$ D= $(5x)^{\circ}$, $<$ E= $(2x + 23)^{\circ}$ y $<$ F= $(x + 7)^{\circ}$

13.- Para un pentadecágono halla la suma de sus ángulos interiores y el número de diagonales.

14.- Los ángulos interiores de un polígono suman 2520°. Halla el número de diagonales.

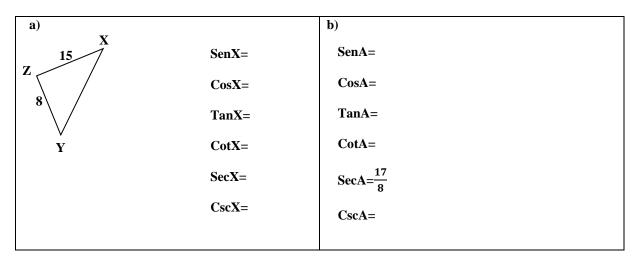
CUADRILÁTEROS Y ÁREAS.

15.- Si ABCD es un paralelogramo, halla el valor de y.

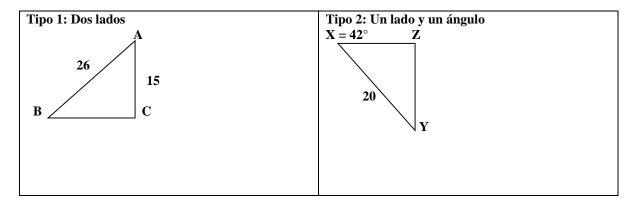
16.- Si ABCD es un paralelogramo, halla el valor de \underline{y} \underline{y} \underline{z} . Si <A = $(3w + 27)^{\circ}$, <B = $(w + 5z)^{\circ}$ \underline{y} <C = 108° .

17.- Si el perímetro de un rombo es de 260 cm y una de sus diagonales mide 50 cm. Halla el área.

18.- Encuentra la altura de un trapecio, si sus bases miden 24 cm y 18 cm respectivamente y su área es de $126~\rm cm^2$.



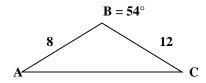
TERCERA ETAPA: TRIGONOMETRÍA (TRIÁGULOS RECTÁNGULOS).


19.- Escribe la definición abreviada de las funciones trigonométricas de un ángulo agudo.

$Sen\theta =$	$\cos \theta =$	$Tan\theta =$	$Cot\theta =$	$Sec\theta =$	$Csc\theta =$

20.- Halla el valor de las funciones:

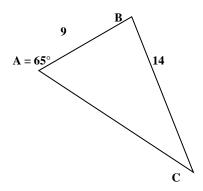
21.- Resuelve cada triángulo, encierra las respuestas:



22.- La sombra que proyecta una persona de 1.65 m es de 1.6 m. En ese instante un árbol proyecta una sombra de 3.5 m. Calcula la altura del árbol.

CUARTA ETAPA: TRIGONOMETRÍA (TRIÁGULOS OBLICUÁNGULOS).

FORMULARIO DE TRIGONOMETRÍA							
Senθ = <u>1</u>	Cosθ	= <u>1</u>	$Tan\theta = \underline{1}$				
Cscθ		Secθ	Cotθ				
$Tan\theta = \underline{Sen\theta}$		$Cot\theta = Cos\theta$					
Cosθ		Senθ					
$\mathbf{Sen}^2\mathbf{\theta} + \mathbf{Cos}^2\mathbf{\theta} = 1$	$1 + Tan^2$	$\theta = \mathbf{Sec}^2\theta$	$1 + \mathbf{Cot}^2\theta = \mathbf{Csc}^2\theta$				
	а	b a					
	$\frac{\overline{SenA}}{SenA} = \frac{\overline{SenA}}{SenA}$	$\frac{\overline{B}}{SenA} = \frac{\overline{SenA}}{SenA}$					
$\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 - 2\mathbf{b}\mathbf{c}\mathbf{C}\mathbf{c}$	osA		$CosA = \underline{b^2 + c^2 - a^2}$				
			2bc				
$\mathbf{b}^2 = \mathbf{a}^2 + \mathbf{c}^2 - 2\mathbf{a}\mathbf{c}\mathbf{C}\mathbf{c}$	osB		$CosB = \underline{a^2 + c^2 - b^2}$				
			2ac				
$c^2 = a^2 + b^2 - 2abCc$	osC		$CosC = \underline{a^2 + b^2 - c^2}$				
			2ab				


23.- Determina el valor del lado $\underline{\mathbf{b}}_{\boldsymbol{\cdot}}$ <C y el área de la figura.

24.- Determina el valor del lado $\underline{b}\ y$ el área de la figura.

RÚBRICA DE EVALUACIÓN.

Porcentaje de ejercicios resueltos correctamente con procedimiento.	85% - 100%	70% - 84%	55% - 69%	20% - 54%	0% - 19%
Orden, limpieza y					
entrega en tiempo y	5 puntos a				
forma.	criterio del				
	Maestro.				